POLARIMETRIC CLUTTER MODELING: THEORY AND APPLICATION
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ABSTRACT

The two-layer anisotropic random medium model is used to investigate fully polari-
metric scattering properties of earth terrain media. The polarization covariance matrices
for the untilted and tilted uniaxial random medium are evaluated using the strong fluc-
tuation theory and distorted Born approximation. In order to account for the azimuthal
randomness in the growth direction of leaves in tree and grass fields, an averaging scheme
over the azimuthal direction is also applied. It is found that characteristics of terrain
clutter can be identified through the analysis of each element of the covariance matrix.
Theoretical results are illustrated by the comparison with experimental data provided by
MIT Lincoln Laboratory for tree and grass fields.
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I. INTRODUCTION

The layered random medium model for terrain cover, in conjunction with the ap-
plication of electromagnetic wave theory, provides a systematic approach in relating the
radar backscatter response to physical properties of geophysical media, where the volume
scattering and anisotropic effects are attributed to the embedded inhomogeneities with
clongated geometry and preferred alignment. For active and passive microwave remote
sensing, the effectiveness of this model has been demonstrated by extraction of physical
parameters from data matching for scene interpretation and feature identification {Zuniga
et al., 1980; Tsang and Kong, 1981; Tsang et al., 1982; Lee and Kong, 1985; Lin et al,
1988a, b). In polarimetric microwave remote sensing, the random medium model has also
been applied to radar image simulation, terrain clutter identification and classification,
and radar range profile simulation of terrain clutter [Shin et al., 1986; Borgeaud et al.,
1987a; Borgeaud, 1987b; Kong et al., 1988; Yueh et al., 1988a; Swartz et al., 1988].

The theoretical modeling of earth terrain media is described in Section II. To account
for the large permittivity contrast between the background medium and the embedded in-
homogeneities, the strong fluctuation theory is applied in Section III, in order to derive
the external field which is decomposed into mean (coherent part) and scattered field (in-
coherent part) components. The mean field is derived using the Feynman diagrammatic
technique and bilocal approximation. In Section IV, the effective permittivity tensor of
the medium is obtained from the constitutive relation. The effective permittivity tensor
is computed in the low frequency limit for an unbounded uniaxial random medium with
two-phase mixture. The distorted Born approximation is then used to calculate the scat-
tered field in Section V. The polarization covariance matrices for the untilted and tilted
uniaxial random medium, as well as that obtained from the azimuthal averaging of the
tilted case are discussed in Section VI. Theoretical 'calculations of the fully polarimetric
random medium model are compared with the experimental data for trees and a grass field
supplied by MIT Lincoln Laboratory.

II. TWO-LAYER ANISOTROPIC RANDOM MEDIUM MODEL

The two-layer anisotropic random medium model is applied to simulate earth terrain
media such as tree canopy and a grass field. In region 1 of Figure 1, the random medium
with height d is characterized by a spatially random permittivity tensor (7). Regions
0 and 2 (air and ground) are considered to be homogeneous media with permittivities ¢
and €;, respectively. All three regions are assumed to have the same permeability, uo.
The polarimetric radar system is located in region 0. The coordinate system (z, y, z) is



oriented so that the zy plane coincides with the air/clutter interface. Interfaces at z =0
and z = —d are assumed to be planar, extending to infinity on the horizontal plane, and
parallel to each other. The volume scattering effect is caused by randomly distributed
scatterers embedded in the layer (e.g., moisture content in leaves) while the anisotropic
effect is due to the elongated shape and preferred alignment of the scatterers. As shown in
Figure 2, the moisture content in trees and grass is modeled as cylindrical scatterers with
the preferred alignment in the yz plane. The elongated direction is along the z'-axis and
tilted by an angle ¥ with respect to the z-axis. Hence, the coordinate system (z', ', z')
which describes the orientation of the scatterers is rotated clockwise by an angle 3 about
the z-axis. In this manner, the z'-axis can be chosen as the optic axis of the permittivity
tensor (7) [Kong, 1986].

In the polarimetric microwave remote sensing of terrain cover, the polarization
covariance matrix is essential for terrain-feature identification and classification [Borgeaud
et al., 1987a; Kong et al., 1988]. For a plane wave impinging on the random medium layer,
the scattered electric field E,(F) is related to the incident electric field E(F) by

[Eﬁu] —_ C“' [fhl fhv] [EM] (1)
En r fvh fn En‘

where the horizontal and vertical components of the the incident and scattered electric
fields are expressed as E,,, E,,, E,., and E,,, respectively. For reciprocal media, the

relation, f,» = fi., 18 obtained in the backscattering direction. Thus, the covariance
matrix is defined as

(1fal) (fnfl) (fafe)]
T=lim | (fnfia) (I5l) (fufir) (2)
(fufin) (fufi) (Ifal?)

where A is the illuminated area and <X ) denotes the ensemble average of the random
variable X. The covariance matrix is normalized so that the diagonal terms represent
the backscattering cross sections per unit area for the HH, HV, and VV polarizations,
respectively.




III. STRONG FLUCTUATION THEORY

Consider a linearly polarized time-harmonic electromagnetic plane wave impinging
on the random medium. The time-harmonic factor e~** is used. The propagation vector
Roi at the observation point has the incident angle 8, with respect to the z-axis (Fig.
1) and the azimuthal angle ¢ . The total electric fields in regions 0 and 1 satisfy the
following vector wave equations:

V x VxEy(F) =k EF) =0 (3)

V x V x Ey(F) - kgi‘f:) E(F) =0 4)

where kg = w’uoéo. In the microwave frequency range, the dielectric constants of air and
moisture content are very distinct. In order to account for the large permittivity contrast
between the host medium and embedded inhomogeneities, a deterministic quantity g, is
introduced in the strong fluctuation theory [Ryzhov and Tamoikin, 1970; Tsang and Kong,
1981; Tsang et al., 1982; Lin et al., 1988a, b]. Equation (4) can then be rewritten as

ot Aog(aF) -
V x V x E\(F) ko% E,()-ko( . )E,(?)

= £}Q,(F) - Eu() (5)

Physically, &, is the effective permittivity tensor of the medium in the low frequency
range where the scattering loss is negligible because the size of scatterers is much smaller
than the wavelength of the incident field [Tsang et al., 1985]. Treating the term on the
right-hand side of (5) as the effective source, the total electric fields in regions 0 and 1 can
be represented in integral forms as follows:

Eyr) = E(") + & [ #7.8u(r,7) - Tu(r) - Bu(m) (®)
E(r) = () + K [, #78u(rr) - Q) - Bulry) (7)

where the unperturbed electric fields, Eﬁo)(?) and E(:)(F), are solutions to the homoge-
neous vector wave equations in (3) and (5) in the absence of the effective source term and
the subscript V; denotes the volume of region 1. The dyadic Green’s functions, Uo,(F, i)

and G,,(F, ¥,), which correspond to the responses at ¥ in regions 0 and 1, respectively,



due to a point source at 7, in the anisotropic homogeneous medium with the permittivity
tensor ¢,, , are governed by the following vector wave equations:

V x V x 501(F, ?l) - k;?ol(?., F1) =0 (8)

V x V x ﬁu(?‘, Fi) — k;% . 611(7', f) = T&(f, 1) (9)

When the source and the observation points are in the same region, there is a singularity
in the dyadic Green's function, which can be dealt with by separating G (F, 7,) into
principal value PSG,;(F, 7,) and singular components, namely,

—ﬁu(F, Fi) = Psﬁn(?, F1) — %6(? - 7)) (10)

Thus, substituting (10) into (7) yields
Fu(F) = EF) + k2 /v &FPSCL(F, 7)) Eu(F) - Fa(Fy) (11)
Fu(7)= [T+3.-Q.(7)] -Eu(7) (12)
£M=0.0-T+3.-06)] (13)

Physically, F,(F) can be interpreted as the external field [Ryzhov and Tamoikin, 1970).

The external field can be decomposed into a coherent part (mean field) <F1(F)>
and an incoherent part F,(F) (scattered field) [Tsang et al., 1985]. Under the bilocal

approximation, the mean field <F1(F) can be expressed as

<F‘1(f)> =Er) + &2 /v_/v d‘ﬂd‘%,PSa,(?,ﬂ)-?,,,,(FI,F,) . <P1(F,)> (14)
where
Euurs(717) = R(E(R) - PSTu(r,7) - (7)) (15)
Using the index notation, (15) can be expressed as

[Biors(Fis7)], = ETimap Re(Fs, %) [Cus(Fisa)] |+ Timay Smabl(Fi = 72)  (16)



where Equation (10) was used and <£1,,.(F, )61.,(?,)> has been replaced with the prod-

uct of the variance, .., (I,m,n,p = z,y,2), and the normalized correlation function,
R¢(7,,7,). For a statistically homogeneous medium, the normalized correlation function
is a function of the displacement between 7, and 7,, i.e.,

Re(F1,73) = R(F, — 71) (17)

Notice that the intrinsic properties of the embedded inhomogeneities are directly related
to the volume scattering mechanism through the normalized correlation function in (14).

IV. EFFECTIVE PERMITTIVITY

The effective permittivity tensor for the uniaxial random medium is derived in this
section, following the usual approach where the effect of boundary layers is neglected [Tsang
and Kong, 1981; Stogryn, 1984]. In an unbounded uniaxial medium, with a quasi-static
effective permittivity tensor of the form

¢ 0 O
E1=]|0 ¢ O (18)
0 0 e,

the mean field satisfies the following vector wave equation

V x V x (F,(r)) - k}% : <F’1(r)> +8 [ : B Er () - <FI(¢1)> =0 (19)

The dispersion relation, obtained from (19), allows the effective permittivity tensor for the
medium to be defined as

€1 0 0
T (B) =8 + eofiyy(B)= |0 & 0 (20)
0 0 e,

where ?I,H(F) is the Fourier transform of ?1,”(?1 — 7;) as given in (16). In the low
frequency limit, £,, ’ ,(F) can be approximated by

[Buurs(0)],, = kilimep [ F&(E) [C,(F)]_ + Timay Sn (21)



where &(k) is the Fourier transform of the normalized correlation function R¢(F). The
Fourier transform of the dyadic Green’s function G,(7) is given as

K} —kk, 0
= 1
G,(k) = —kk, k20
o) (k2 + k2 — ke, ) k2 | 7 :
0 0o 0
k2 (k2 - kde,.)  kaky (k:—kge,,) . ;
k: k: a’vE
1
- T | gk (k2 - k3e,) k2 (k2 - R2e,)
kie,, [Ic,’+f—'—(k:—kge,,)] 'k: y »k= kyk,
g
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(22)

in which k} = kJ + kJ. Analytical expressions for ?W ;(0) and the diagonal tensor 3
are shown in Appendix A. For a two-phase mixture consisting of a background medium

and scatterers with permittivities ¢, and ¢,, respectively, g, can be evaluated from the
following criterion [Tsang and Kong, 1981]:

<?1(F)> =0 (23)
From (13) and (23), we obtain

€ — €
wtSa-e)

1-£)+

wtSe -y =" (24)

€ — Eu

€o + Sl(eb - e,z)

€, — €y
€o + S,(C. - Egl)

1-f£)+ fi=0 (25)

where f, is the fractional volume of scatterers. Equations (24) and (25) are the anisotropic
version of Polder and van Santen’s mixing formula [Polder and van Santen, 1946].

V. DISTORTED BORN APPROXIMATION

In the strong fluctuation theory, the original random medium is replaced with an
equivalent random medium which has the permittivity, &,. This can be accomplished



without altering the characteristic of the volume scattering effect because the effective
source defined in (5) remains intact, that is,

K1Q,(F)- Ei(F) = k2 €,(F) - Fu(F) (26)

where (12) and (13) have been used. From (6), the total electric field in region 0 can be
rewritten as

Eo(F) = EO(F) + k2 /v ‘ &F.Co(F, FL) - 6,(Fr) - Fu(Fr)

= EV(F) + Eo(F) (27)

where E () is the scattered electric field due to the effective source. By adopting the
concept of the distorted Born approximation in quantum mechanics [Newton, 1966; Schiff,
1968], the scatterers are assumed to be embedded in the equivalent medium with the effec-

tive permittivity, €.,/(0) [Lang, 1981}, so that the mean field, <F;(F)>, is used to ap-

proximate the external field, F',(F¥), and the mean dyadic Green’s function, <3m (7, ﬂ)>,

is used to replace —ﬁm(?‘, 7.). The following vector wave equations:

VXV x <F1($)> - k;L;(O) : <rl(?)> =0 (28)

VY xV x <3,°(F, ?1)> - k;i‘;';@ : <3,o(?, ?x)> =0 (29)

in conjunction with the symmetric property of the dyadic Green’s functions, namely,

- — T
<§01(F, F,)> = <C7m(i‘1, ?)> , are used to derive the mean field and the mean dyadic

Green’s function for the scattered electric field which can be written as
Eyr) = K [ 7 (Balr, 7)) - &) - (Fir) (30)

Physically, the scattered electric field, under the distorted Born approximation, corre-
sponds to the single scattering of the coherent fields {Tsang, et al., 1985]. It is also known
as the first-order multiple scattering {Ishimaru, 1978}. After decomposing E,(F) into hor-
izontal and vertical components and making use of (1) and (2), the nine elements of the
polarization covariance matrix can be computed.



V1. DATA MATCHING AND APPLICATIONS
Data Matching

For an untilted uniaxial random medium, the optic axis is in the z-direction, ¥ =
¥y = 0. For vertically and horizontally polarized incident fields, the single scattering
process in the distorted Born approximation does not depolarize the incident field in the
backscattering direction and the coefficient f,, vanishes. Hence, the covariance matrix

becomes
1 0 oA
C=s| 0 0 0 (31)
vy 0 v

where o is the backscattering coefficient for the HH polarization, 7 is the copolarization

intensity ratio (o,,/onm), and p is the normalized correlation coefficient between HH and
VYV returns given by

b= __<faj§> (315)

In general, for the case of tilted uniaxial random medium (¥ = ¥, # 0), depo-
larization effects exist even in the single scattering process, and the nine elements of the
covariance matrix are all nonzero, i.e.,

1 Bve oA
C=c|BVe e ¢ty (32)
VY Ve

where
(s
A= —r (32a)
_ (M f)
= - (32b)

are the correlation coefficients between the HH and HV and HV and VV channels, respec-
tively. However, when the downward propagation vector Xy lies in the yz plane, i.e.,
#0i = 90°, both the double refraction phenomenon and the depolarization effect in the



backscattering direction disappear so that fi, = 0 [Lee and Kong, 1985a]. Under this
condition, the covariance matrix also retains the same form as the untilted case, as shown
in (31). It should be noted that the growth directions of leaves in trees and grass fields are
not necessarily aligned in one direction. In order to account for the random orientation
of the scatterers in the azimuthal direction, an azimuthal averaging scheme [Borgeaud,
1987b] is applied to derive the polarization covariance matrix. It is found that although
fae # 0, four of the elements in the covariance matrix reduce to zero [Borgeaud et al.,
1987a; Kong et al., 1988]. Thus the polarization covariance matrix becomes

1 0 o4
C=c| 0 ¢ 0 (33)

PFVY 0y
The existence of the four zero elements is due to the fact that the random medium possesses
an azimuthal symmetry in a statistical sense. The four zero elements of the covariance
matrix indicate that there is no correlation between the copolarization (HH and VV) aad
cross-polarization (HV) returns,i.e., =0 and £ =0.

In order to illustrate the random medium model, polarimetric data for forests and
grass fields obtained from MIT Lincoln Laboratory are matched with this model. The op-
erating frequency was 35 GHz, and the angle of incidence was 82° . Measured covariance
matrices for grass and tree regions, given in Table 1, were calculated from the blocked
out regions shown in Figure 7 of [Swartz et al, 1988]. Analysis of this database indi-
cated that there is essentially no correlation between the HH and HV, and between
the HV and VV polarimetric returns; from a statistical point of view the terrain clutter
exhibited azimuthal symmetry, and therefore 8 ~ 0 and ¢ ~ 0. Thus, the form of the
covariance matrix shown in (33) was utilized. The corresponding theoretically calculated
covariance matrix parameters, also shown in Table 1, were obtained by azimuthal averag-
ing [Borgeaud, 1987b] of the covariance matrices obtained using the two-layer anisotropic
random medium model with the application of the strong fluctuation theory and distorted
Born approximation.

Applications

The random medium model provides a systematic approach for the design of optimal
target detection and classification algorithms [Novak et al., 1987] and the identification of
terrain media such as vegetation canopy, forest, and snow-covered fields using the optimum
polarimetric classifier [Kong et al., 1988]. The polarization covariance matrices for various
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terrain covers were computed from theoretical models of random medium. The optimal
classification scheme made use of a quadratic distance measure and was applied to classify
a vegetation canopy consisting of both trees and grass; i.c., using the fully polarimetric
covariance matrix for the scattered fields, the Bayes likelihood ratio test was performed on
specific measurements to classify the terrain into different categories. The Bayes likelihood
ratio test has been shown to be optimal in the sense that it minimises the probability of
error [Fukunaga, 1972; Hord, 1986; Richards, 1986; Swain, 1978].

The probabilities of error obtained using fully polarimetric data were compared with
the probabilities of error obtained using several single, polarimetrically derived features.
For each single feature studied, the corresponding probability density function was derived.
Once the probability density functions were known, the Bayes likelihood ratio test was
performed to classify terrain elements into different categories. For classification schemes
based on single features, closed-form expressions for the probability of error were calculated
(Kong et al., 1988].

A supervised Bayes classification was applied to synthetic aperture radar (SAR)
polarimetric images in order to identify their various earth terrain components [Lim et
al., 1988]. Both fully polarimetric and normalized polarimetric classifications were em-
ployed to classify radar imagery. It was again shown, in this case through use of radar
images, that fully polarimetric classifications yielded optimal results; however, an optimal
normalized classification scheme [Yueh et al., 1988b] indicated improved performance in
regions where the absolute backscattering coefficients differed significantly from that of the
training regions due to the variation in return power as a function of incident angle.

The Bayes classification is known to give minimum probability of error as long as
the statistical distributions of the radar returns are known and the training areas are
accurate. However, as noted above, the selected training regions were not sufficient to
classify correctly the entire image due to the variation in incident angle over the imaged
swath. By employing the random medium model to generate the classifier training data,
the effect of the incident angle can be included in the classification scheme.

Another application of the fully polarimetric, multi-incident angle and frequency
random medium model is to match training data from various image regions, say at one
frequency and during one particular season, and then generate classifier training data
which will predict the backscattered response of the terrain at different frequencies and
during different seasons of the year. For example, the effects of the winter season can be
simulated by adding a layer of snow to a terrain from which training data was recorded
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during the summer season. In this manner, data need not be collected for all seasons and
at all frequencies. The random medium model can be used to predict the backscattered
response based on the initial training data.

APPENDIX A

The normalized correlation function, R¢(z', v/, z'), for the unbounded uniaxial
random medium in the (z', ¥/, z') coordinate frame is assumed to be

exp ——i,— - T T (A1)
so that ?I-H is given by
Paa.-(I + S) 0 0
£ups(0) = 0 Tyr(I + 5) 0 (42)
0 0 L.u(l +S.)
where
| G (f,(?)) =4 (A43)
llll = <€ (?)) E (A4)
and
e (va= C+\/a+1)(F+1+1)]
" xe,(a+2) \/a_+_ a— —s\/7a+1)
(+2 8| X2+ | 2
e 18, (P B )
T (B+2) | VBFIL ° VB—x—iJx(B+1)
V2(Vx+2-1 n
+2y/(8 - x)(x + 2)log [ ‘/)%%iﬁ)] + (x2+ 2)} (A5)
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2 [ 28 | [(vVF=x+VE+T) (VBFT+1)
‘TR (B2 |VAFI ® VB=x—iyx(B +1)
B—x, [V2(vxiF2-1)] =8
MR FT T [W] - 7} 49
where p
C=QkL x=T6  a=(+f,  B=a (47)

The components of 3, are obtained from the frequency-independent part of (A5) and
(A6):

PR { 2 log n\/ﬁ"rﬂn]
&(n* +2) w\/(r]’+1) v +1-1

v2n v2+1
—-—”—log \/f—l] +1} (A8)
- _ €o { 4n’ log v +1+1 ]
e )\ iy L VEI-
2v2n. [v2+1] |,
- log V2 — 1] -n } (A9)
n= 55'7’5. (A10)

From (A8) and (A9), it can be shown that S and S, satisfy the condition [Stogryn,
1983):

25+ g =1 (A11)
€ €o
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Figure 1 : Anisotropic two-layer random medium configuration.
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Figure 2 : Geometry of the permittivity tensor in the anisotropic random medium.
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§ =0.066 8, =2.02
{,=04mm { =35mm
z=-01m
€2 = (6.0 +i0.6)eq
o (dB) e v Id b
Experiment -14.5 0.19 1.4 0.54 3.5°
Theory -14.4 0.17 1.3 0.59 3.6°
(b)
f =235 GHs
z=0m
e = (1.0233 +10.0013)¢o
€1, = (1.0233 + i0.0200)¢o
% =25° ¥y = 25° TREES
§ =0.0451 §, =0.9644
£,=05mm { =3.5mm
z=-10m
€3 = (6.0 +10.6)¢co
o (dB) e ¥ ol é»
Experiment -10.8 0.12 1.2 0.64 0.7°
Theory -10.6 0.12 1.2 0.65 4.5°

Table 1 : Covariance matrix elements for grass (a) and trees (b).




